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ABSTRACT 1 

Connected and automated vehicles (CAV) may deliver energy efficiency and air quality benefits 2 

by reducing traffic congestion and facilitating smoother driving behavior. This paper proposes a 3 

three-layered modeling framework for assessing the energy and emission impacts of first-4 

generation CAV technologies, such as cooperative adaptive cruise control (CACC). The 5 

framework tightly integrates 1) a CAV driving behavior model with 2) a microscopic traffic 6 

simulation model to create vehicle trajectory data and then evaluates those trajectories in 3) a 7 

fleet-based modal emissions model.  8 

 9 

In a case study to test this framework, we utilized the microscopic model for simulation of 10 

intelligent cruise control (MIXIC) to represent vehicles driving with CACC systems in PTV 11 

Vissim, traffic microsimulation software, on Interstate 91 (I-91) northbound near Springfield, 12 

Massachusetts with real-world traffic speed and volume data. High-resolution (10 hertz), 13 

simulated passenger car trajectories were processed into operating modes according to vehicle-14 

specific power, speed, and acceleration and then run through the Motor Vehicle Emission 15 

Simulator (MOVES) to quantify the hourly emissions and energy consumption on the I-91 16 

network. We compared the results of baseline driving using the default Wiedemann 99 car 17 

following model in Vissim against a scenario where all vehicles are CACC-enabled and another 18 

scenario where the Wiedemann oscillation parameters were set to zero. Our findings suggest that 19 

CACC driving will produce notable reductions in fine particulate matter (PM2.5) and carbon 20 

monoxide (CO) over the baseline but will not have an effect on fuel economy. The Wiedemann 21 

scenario without oscillations showed little to no benefit. 22 

 23 

 24 

 25 

Keywords: Automated vehicles, mobility benefits, energy, emissions, traffic simulation, MOVES   26 
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INTRODUCTION 1 

Connected and automated vehicles (CAV) are poised to transform surface transportation systems 2 

in the United States. While much of the CAV research focuses on future road safety and network 3 

performance, environmental effects are often overlooked. There is growing concern that 4 

automation may induce travel demand and therefore increase fuel consumption and air pollution 5 

from the passenger vehicle fleet. Near-term CAV technologies like cooperative adaptive cruise 6 

control (CACC) have the potential to deliver energy efficiency and air quality benefits. This 7 

paper lays out a modeling framework for evaluating fuel economy and tailpipe emission impacts 8 

from vehicle automation and connectivity, including an initial case study of passenger cars on 9 

Interstate 91 northbound near Springfield, Massachusetts. This framework is designed to assess 10 

low-level automation, specifically Society of Automotive Engineers (SAE) J3016 Level 1 (1) 11 

that assist the human driver in tasks such as acceleration and deceleration or steering. 12 

 13 

Background 14 

In 2014, the US Department of Transportation’s Intelligent Transportation Systems Joint 15 

Program Office (ITS JPO) initiated a project to develop a framework for the potential benefits of 16 

automated vehicles across various impact areas and different spatial and temporal resolutions, 17 

with an initial report being published in 2015 (2). This paper focuses on analysis within two 18 

areas of the broader framework: vehicle operations and energy/emissions.  19 

 20 

Other research published in these specific impact areas of CAV modeling can be categorized into 21 

three groups:  22 

 23 

1) Modeling vehicle automation in traffic microsimulation software; 24 

2) Evaluating link-level energy and emissions of microsimulation vehicle trajectories, 25 

particularly through the Motor Vehicle Emission Simulator (MOVES) (3); and 26 

3) Quantifying emissions and energy impacts of CAV technologies. 27 

 28 

Modeling vehicle automation in traffic microsimulations 29 

Automated car following via adaptive cruise control (ACC) and cooperative adaptive cruise 30 

control (CACC) systems have been extensively modeled through microscopic traffic simulations 31 

for the last two decades. In 2002, VanderWerf et al. (4) characterizes CACC systems as ACC 32 

systems with vehicle-to-vehicle (V2V) communication and a reduced time gap between vehicles. 33 

VanderWerf et al. demonstrated that microsimulations could be used to model the trajectories of 34 

vehicles equipped with ACC and CACC systems and concluded ACC would be unlikely to 35 

change traffic flow and increase highway capacity whereas CACC could increase capacity. 36 

Further work by van Arem, van Driel, and Visser (5) developed a stochastic traffic flow model 37 

called MIXIC to analyze the impact of CACC systems on vehicle speeds and the number of 38 

shockwaves. They found that high penetrations of CACC, upwards of 60 percent, led to greater 39 

traffic stability and throughput. Shladover, Su, and Lu (6) used the microsimulation software 40 

AIMSUN (7) to explore the impacts on lane capacity under different market penetrations of ACC 41 

and CACC according to preferred time gaps between vehicles based on a consumer acceptance 42 

study by Nowakowski et al. (8). 43 

 44 

PTV Vissim (9) offers the conventional Wiedemann 74 and the Wiedemann 99 models for 45 

default car following, as explained by Aghabayk et al. (10). Besides MIXIC, other independent 46 

psychophysical car following models for CAVs have been created for implementation in 47 
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microsimulations, such as the Intelligent Driver Model (IDM) from Treiber et al. (11) and an 1 

enhanced IDM from Kesting et al. (12). The most recent studies have begun to analyze mixed 2 

traffic scenarios of automated and human-driven vehicles on specific real-world road networks. 3 

For example, Shelton et al. (13) used a dynamic traffic assignment (DTA) model to calibrate a 4 

microscopic traffic network on Interstate 35 in Austin, Texas and then adjusted Vissim’s 5 

Wiedemann 99 parameters for CACC driving.  6 

 7 

Evaluating link-level energy and emissions of microsimulation vehicle trajectories 8 

The connection between traffic microsimulations and emissions models is well established. 9 

Some of the first microsimulation-emissions model integrations were described separately by 10 

Barth, Malcolm, and Scora (14) in 2001 and by Ahn et al. (15) in 2002. Barth, Malcolm, and 11 

Scora integrated Quadstone Paramics traffic simulation software (16) with the Comprehensive 12 

Modal Emissions Model (CMEM), which assesses tailpipe emissions and fuel consumption from 13 

second-by-second (1 Hz) vehicle trajectories. Later work in a paper by Barth and 14 

Boriboonsomsin (17) analyzed the impacts of eco-driving, though not specifically ACC or 15 

CACC systems, with the Paramics-CMEM tool. Ahn et al. paired the INTEGRATION 16 

microscopic model with a fitted regression model, later named VT-Micro (18), which used 17 

emissions test data from eight light-duty vehicles on a chassis dynamometer. 18 

 19 

Contemporary integrations usually employ emission rate data from the US Environmental 20 

Protection Agency’s MOVES, the regulatory emissions inventory model for highway vehicles 21 

built on modal 1 Hz data from portable emissions measurement systems introduced by Frey et al. 22 

(19) and others. Song, Yu, and Zhang (20) described the early shortcomings of emission 23 

estimates from MOVES using large, multi-gigabyte files of simulated vehicle trajectory data 24 

from Vissim. Similar to our current work, Abou-Senna et al. (21) developed a custom software 25 

package called VIMIS that translated Vissim output data into MOVES project-level input files, 26 

mainly operating mode distributions from vehicle trajectories as an external process from the 27 

MOVES graphical user interface (GUI).  28 

 29 

Quantifying emissions and energy impacts of automation technologies 30 

Tu et al. (22) have conducted a study with similar methodology to our research, though they 31 

make emission and energy estimates of CACC by pairing INTEGRATION with VT-Micro. Liu, 32 

Kockelman, and Nichols (23) used MOVES to calculate the emissions and energy benefits of 33 

smoothing standard drive cycles, such as the Federal Test Procedure (FTP) commonly used for 34 

fuel economy testing.  35 

 36 

Integrating Vissim and MOVES for automated vehicle modeling 37 

Our previous research on the Vissim-MOVES integration for emissions and energy modeling of 38 

CAVs produced two publications. First, Reed et al. (24) analyzed an idealized, straight highway 39 

segment to find the environmental benefits of traffic smoothing through a modified Wiedemann 40 

99 car following model where all the traffic oscillations have been set to zero. Second, Eilbert et 41 

al. (25) utilized a version of the CACC MIXIC car following model adapted from a Federal 42 

Highway Administration (FHWA) project in Vissim to study emissions and energy impacts on an 43 

idealized two-mile highway segment. We found that a limited number of CACC-equipped 44 

vehicles could be added to the idealized network to maintain comparable fuel consumption and 45 

criteria pollutant emissions as the baseline Wiedemann 99 scenario with a throughput of about 46 

2,500 vehicles per lane per hour. 47 
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 1 

METHODOLOGY  2 

This section describes our modeling framework from configuring the microsimulations to 3 

analyzing the energy and emissions impacts from MOVES. In this study, we devised three 4 

scenarios for comparison: 5 

 6 

1) Baseline driving behavior with Vissim’s default Wiedemann 99 car following, meant to 7 

emulate current human drivers; 8 

2) CACC driving behavior according to an adjusted MIXIC model car following model 9 

developed for FHWA; and 10 

3) Modified baseline driving behavior where the Wiedemann 99 traffic oscillation 11 

parameters have been set to zero. 12 

The CACC MIXIC model used in the second scenario was adapted from unpublished work by 13 

Su et al. (26) and supplied as a dynamic link library (DLL) by FHWA’s Turner-Fairbank 14 

Highway Research Center, where several driving behavior models are being developed, 15 

calibrated, and tested. By importing the DLL with a specified driver model, we could override 16 

the default car following behavior in Vissim. Additionally, we edited the DLL source code to turn 17 

off the flags for platooning, lane change, and a managed lane. Turner-Fairbank also has a 18 

publicly available version of the MIXIC DLL for download (27). 19 

 20 

Given that CACC systems fall within Level 1 automation, the human driver is expected to 21 

perform all aspects of the dynamic driving task besides acceleration and/or deceleration behind a 22 

lead vehicle. Steering and tactical components of driving (i.e. merging and turning) would still be 23 

the responsibility of the driver. Like constant-speed cruise control, we imagine CACC would be 24 

enabled through a button on the vehicle dashboard or steering wheel and vehicle control would 25 

be transferred to the human driver upon touching the brake pedal. 26 

 27 

In the third scenario (24), the following five Wiedemann 99 parameters were set to zero and 28 

expected to smooth driving behavior:  29 

 30 

 Following variation (CC2), 31 

 Negative following threshold (CC4),  32 

 Positive following threshold (CC5),  33 

 Speed dependency of oscillation (CC6), and  34 

 Oscillation acceleration (CC7).  35 

Traffic Microsimulations 36 

For this research, we selected a traffic microsimulation model with flexibility to use a new 37 

driving behavior model.  We chose PTV Vissim to run 15 random seeds at 10 Hz for each of the 38 

three scenarios. Each of these 45 simulations generated a standardized text output (.fzp) file of 39 

vehicle trajectory data containing the following fields: 40 

 41 

 Time stamp (tenths of a second), 42 

 Vehicle type, 43 

 Vehicle number, 44 

 Link and lane number, 45 

 Speed (miles per hour), 46 
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 Acceleration (feet/second2), 1 

 Headway (feet) to the leading vehicle, and 2 

 Delay time (seconds). 3 

From the Vissim manual (9), headway is defined as the distance to the preceding vehicle before 4 

the time step and delay time is the difference between the simulated and ideal driving time. 5 

Random seeding allows Vissim users to compare results across scenarios. Our study used 15 6 

random seeds and each seed had its own unique settings about when and how vehicles entered 7 

the network. The only difference between our three scenarios was the car following model, so we 8 

compared the CACC and Wiedemann without oscillations scenario results against the baseline by 9 

seed number.   10 

 11 

Network Modeled 12 

To test the modeling framework on a real-world road network, Interstate 91 northbound (NB) 13 

near Springfield, Massachusetts was chosen (29). This I-91 NB network is a freeway segment 14 

with five on-ramps and seven off-ramps over roughly three miles and consisting of mostly three 15 

lanes. Much of the analysis below focuses on the I-91 freeway links between Route 5 and 16 

Interstate 291, which present optimal road conditions for CACC simulations. The satellite image 17 

in Figure 1a below shows the superimposed I-91 links labeled 100 to 104. 18 

 19 

FIGURE 1 (a) I-91 in Springfield, Massachusetts and (b) the Vissim network 20 

implementation with observed weekday morning traffic volumes entering the network  21 
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Network Calibration 1 

Traffic volumes on the I-91 NB network were defined in the microsimulation using vehicle 2 

counts from the Massachusetts Department of Transportation (MassDOT) Transportation Data 3 

Management System (33). We used the most recent counts from weekday mornings, specifically 4 

07:00-08:00. Utilizing these MassDOT records, the volumes were specified in Vissim using the 5 

corresponding field sensor data laid out in Figure 1b. The MassDOT volume data indicates that 6 

more than 2,500 vehicles entered the network from I-91 (Node 1) and that about 1,000 vehicles 7 

entered from the west on Route 5 (Node 6) and about 700 vehicles entered from the east on 8 

Route 5 (Node 2). Volumes entering from Massachusetts-83 (Node 3) were not available and 9 

estimated from other nearby ramps to be 700 vehicles. On-ramps from local roads had roughly 10 

350 vehicles (Node 4) and 90 vehicles (Node 5) entering the network, respectively.   11 

 12 

A cumulative speed distribution was developed in miles per hour (mph) for the I-91 network 13 

from a nearby speed sensor (I-91 northbound from Route 5 southbound, MassDOT Data Locale 14 

ID 2797). The desired I-91 speed measurements were collected in April 2017 in the following 15 

speed bins: 0-39, 40-44, 45-49, 50-54, 55-59, 60-64, 65-69, 70-74, 75-79, 80-84, and 85-119 16 

mph. For simplicity, the first and last speed bins were dropped and then cumulative percentages 17 

were calculated by speed bin and assigned to the midpoint speed of the bin. Figure 2 below 18 

shows the midpoint speed-cumulative percentage pairs plotted for the I-91 network with a 19 

normal cumulative distribution of speeds for reference. The measured I-91 speed distribution was 20 

then used as an input to the traffic microsimulations across the three scenarios and all 45 runs. 21 

 22 

 23 
 24 

FIGURE 2 A cumulative speed distribution derived from I-91 speed measurements and a 25 

normal cumulative distribution for reference 26 
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Energy and Emissions Modeling 1 

In our modeling, the energy consumption and tailpipe emissions—particularly carbon monoxide 2 

(CO), nitrogen oxides (NOx), particulate matter of 2.5-micron diameters or less, volatile organic 3 

compounds (VOC), and carbon dioxide (CO2)—is based on project-scale analysis with the latest 4 

release of EPA’s Motor Vehicle Emission Simulator (MOVES2014a), which uses high-resolution 5 

vehicle trajectories to estimate impacts. Much like the traffic microsimulations, the I-91 6 

northbound network was modeled through a series of MOVES project-scale inputs including link 7 

number, length, volume, average speed, and operating mode distribution.  8 

 9 

For initial MOVES testing, we chose to model the network as a custom domain for one weekday 10 

morning hour in January 2020, adapted from the original run specifications proposed in Reed et 11 

al. (24). MOVES run specifications are stored within an XML file and are conventionally given 12 

the extension .mrs. By directly editing the .mrs files, we avoided having to change parameters in 13 

the MOVES GUI. 14 

 15 

Other project-scale inputs were specified for the I-91 network where known and the rest of the 16 

inputs were replicated from national-scale default data. Only three project-scale input tables 17 

utilized network data, namely the link, linksourcetypehour, and opmodedistribution tables. The 18 

linksourcetypehour table was network-specific, but it did not change between scenarios and 19 

random seeds. The link and opmodedistribution tables were edited and inserted dynamically 20 

using Python to circumvent entering them individually via the MOVES Project Data Manager. 21 

  22 

Operating Mode Distributions 23 

MOVES assigns each time step t of a vehicle trajectory into one of 23 operating modes through 24 

binning of three time-dependent variables: vehicle-specific power (VSPt), vehicle speed (vt), and 25 

vehicle acceleration (at). VSP is the tractive power exerted by the vehicle for propulsion 26 

normalized by the vehicle mass (34), as defined in Equation 1 below: 27 

 28 

 
 

(1) 

 29 

where A is the tire rolling resistance coefficient, B is the rotational resistance coefficient, C is the 30 

aerodynamic drag coefficient, and m is the vehicle mass. Default road load coefficients A, B, and 31 

C as well as vehicle mass m for a passenger car were pulled from the MOVES2014a 32 

sourceusetypephysics table for our calculations of VSPt: 33 

 34 

 A = 0.15461 kW-s/m (kilowatts-seconds per meter), 35 

 B = 0.00200193 kW-s/m2 (kilowatts-seconds per meter squared), 36 

 C = 0.000492646 kW-s/m3 (kilowatts-seconds per meter cubed), and 37 

 m = 1.4788 metric tons. 38 

 39 

Speeds vt in meters per second (m/s) and accelerations at in meters per second squared (m/s2) 40 

were used to calculate VSPt for every 10 Hz step in each .fzp file. After calculating VSPt, 41 

operating modes were assigned according to the designations given in the MOVES technical 42 

documentation of light-duty emission rates (30), as reproduced in Table 1 below. Operating mode 43 

distributions summarizing the fraction of time spent in each operating mode were developed by 44 

link for the 45 simulations on the I-91 network.  45 

𝑉𝑆𝑃𝑡 =
𝐴𝑣𝑡 + 𝐵𝑣𝑡

2 + 𝐶𝑣𝑡
3 +𝑚𝑣𝑡𝑎𝑡

𝑚
, 1 
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TABLE 1 MOVES operating mode designations based on VSP, speed, and acceleration (34) 1 

Operating 

Mode 

Operation Mode 

Description 

Vehicle-Specific Power 

(VSPt, kW/metric ton) 

Vehicle Speed 

(vt, mph) 

Vehicle 

Acceleration 

(at, mph/s) 

0 Deceleration/Braking  

  at ≤ -2.0 OR (at 

< -1.0 AND at-1 

< -1.0 AND at-2 

< -1.0 ) 

1 Idle   -1.0 ≤ vt < 1.0   

11 Coast  VSPt < 0  1 ≤ vt < 25   

12 Cruise/Acceleration  0 ≤ VSPt < 3  1 ≤ vt < 25   

13 Cruise/Acceleration  3 ≤ VSPt < 6  1 ≤ vt < 25   

14 Cruise/Acceleration  6 ≤ VSPt < 9  1 ≤ vt < 25   

15 Cruise/Acceleration  9 ≤ VSPt < 12  1 ≤ vt < 25   

16 Cruise/Acceleration  12 ≤ VSPt  1 ≤ vt < 25   

21 Coast  VSPt < 0  25 ≤ vt < 50   

22 Cruise/Acceleration  0 ≤ VSPt < 3  25 ≤ vt < 50   

23 Cruise/Acceleration  3 ≤ VSPt < 6  25 ≤ vt < 50   

24 Cruise/Acceleration  6 ≤ VSPt < 9  25 ≤ vt < 50   

25 Cruise/Acceleration  9 ≤ VSPt < 12  25 ≤ vt < 50   

27 Cruise/Acceleration  12 ≤ VSPt < 18  25 ≤ vt < 50   

28 Cruise/Acceleration  18 ≤ VSPt < 24  25 ≤ vt < 50   

29 Cruise/Acceleration  24 ≤ VSPt < 30  25 ≤ vt < 50   

30 Cruise/Acceleration  30 ≤ VSPt  25 ≤ vt < 50   

33 Cruise/Acceleration  VSPt < 6  50 ≤ vt  

35 Cruise/Acceleration  6 ≤ VSPt < 12  50 ≤ vt  

37 Cruise/Acceleration  12 ≤ VSPt < 18  50 ≤ vt  

38 Cruise/Acceleration  18 ≤ VSPt < 24  50 ≤ vt  

39 Cruise/Acceleration  24 ≤ VSPt < 30  50 ≤ vt  

40 Cruise/Acceleration  30 ≤ VSPt  50 ≤ vt   

 2 

Batch MOVES Runs 3 

Running MOVES many times can be tedious. We automated this process with Python by 4 

creating a new input database with the link and opmodedistribution tables for every run using the 5 

vehicle trajectory data produced by Vissim for the I-91 northbound network. For each of the 45 6 

simulation runs, a unique input database with link statistics, such as traffic volumes, average 7 

speeds, and operating mode distributions, was created and dropped into a new .mrs file. The .mrs 8 

file was then executed through a MS-DOS batch file instead of the MOVES GUI. This Python-9 

based tool was able to evaluate energy and emission results for the 17.5 GB of vehicle trajectory 10 

data over 45 microsimulations on the I-91 network with a single button click. 11 

 12 

 13 

RESULTS 14 

After running the traffic microsimulations and processing the resulting vehicle trajectory data in 15 

MOVES, we compared the link-level network performance and impacts to fuel consumption and 16 

tailpipe emissions across scenarios.  17 

 18 
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Microsimulation Performance 1 

Summaries of vehicle speed, acceleration, delay time, and headway results from the first random 2 

seed of traffic microsimulations for I-91 northbound network are presented as box plots below in 3 

Figure 3. Interestingly, we found that the second scenario with CACC driving does not increase 4 

average vehicle speeds over the baseline scenario except for Link 101, but it will narrow the 5 

range of speeds, particularly for links with higher congestion, as shown in Figure 3a. The third 6 

scenario where the Wiedemann 99 oscillation parameters are set to zero does not show 7 

appreciable difference in speeds from the baseline. In Figure 3b, CACC driving appears to 8 

smooth accelerations across all links besides Link 100 while setting the Wiedemann oscillations 9 

to zero generated more constant speeds except for Link 101. 10 

 11 

Delay and headway must be non-negative, so those plots begin at zero. Figure 3c shows that 12 

CACC driving leads to some small reductions in delay time over the baseline, especially for Link 13 

101 and 104, but increased delay time slightly for Link 100, possibly due to the merging with 14 

Route 5 ahead in the next link. The Wiedemann scenario without oscillations offered only 15 

marginal improvements to baseline delay time if at all, only Link 104 shows a modest 16 

improvement. Headway had mixed results in Figure 3d. CACC driving yields an observable 17 

reduction in maximum headway for Link 100, 102, and 103 but not for Link 101 nor 104, 18 

potentially due to the MIXIC model leaving more following distance than Wiedemann for 19 

merging situations. The CACC and baseline scenarios did not show any perceptible difference in 20 

mean headways. The Wiedemann scenario had little effect on headway and even faintly 21 

increased maximum headway for the first three links. 22 



Eilbert, Jackson, Noel, Smith  11 

 

 

FIGURE 3 Box plots of (a) vehicle speed (mph), (b) acceleration (ft/s2), (c) delay time (sec), 1 

and (d) headway (ft) for the first random seed as an example on the I-91 network by link 2 

and scenario (red dot represents the mean)  3 

(a) 

(b) 

(c) 

(d) 

Baseline CACC Wiedemann 
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Another way to examine the link-level performance is through operating mode (or op mode) 1 

distributions, as shown in Figure 4. For each link-specific operating mode distribution, the first 2 

random seed is represented by the bar plot and other 14 seeds are represented by the scatterplot 3 

to highlight the variability between simulations. As one might expect, most of the time on these 4 

highway links is spent driving at speeds above 50 mph (op modes 33-40) and in midrange VSP 5 

bins or braking (op mode 0). 6 

 7 

Each op mode distributions has different characteristics. In Figure 4a,  Link 100 is characterized 8 

by the CACC scenario having less braking and less time in op mode 35 but recognizably more 9 

time in the highest two operating modes than the baseline. The Wiedemann scenario without 10 

oscillations spent nearly half of its time in op mode 35 and has some reductions from the 11 

baseline in op modes 33, 37, and 38. Link 101 appears to be the most congested link with high 12 

fractions of braking and some idling (op mode 1) for the baseline and Wiedemann scenarios, as 13 

shown in Figure 4b. The CACC scenario shows drops in braking and op mode 30 compared to 14 

the baseline, although it has increases in op modes 35-39. The Wiedemann scenario has slightly 15 

less braking than the baseline but higher fractions in op modes 30, 35, and 40, where much of the 16 

driving on Link 101 is spent. Links 102-104 in Figure 4c-4e follow similar patterns, though the 17 

CACC scenario in Link 102 and 104 contains marginally more braking and somewhat less time 18 

spent in op mode 40 than the baseline. Like in Link 100, the Wiedemann scenario spent nearly 19 

50 percent of time in op mode 35 for these last three links but has a similar distribution as the 20 

baseline. 21 

 22 

Energy and Emission Impacts 23 

MOVES stores tailpipe exhaust emission and fuel consumption rates by operating mode and 24 

number of other factors, such as fuel type, model year, and regulatory class. MOVES emission 25 

and fuel consumption rates are well correlated to VSP, so generally speaking the rates will be 26 

highest in the op modes with the highest VSP and speed bins (34). In its simplest form, to 27 

calculate hourly emissions and energy estimates for each op mode, MOVES multiplies the 28 

hourly op mode time fraction by the appropriate op mode-specific hourly emission or fuel 29 

consumption rate from the default database and then sums the emissions or fuel consumption 30 

across the set of all op modes.  31 

 32 

The results follow the same trends across all pollutants and energy use. The hourly emission and 33 

energy estimates were normalized by the number of vehicles because each of the 45 34 

microsimulations had different link throughputs. As example output, Figure 5a shows the 35 

normalized hourly results by link for energy consumption reported in one million British 36 

Thermal Units per vehicle per hour (MMBTU/veh/hr) and Figure 5b shows fine particulate 37 

matter (PM2.5) reported in grams per vehicle per hour (g/veh/hr). As summarized in these link-38 

specific plots, CACC driving generated PM2.5 and energy reductions over the baseline for Link 39 

101 and 104, likely due to higher levels of congestions; however, CACC driving caused 40 

increases for Link 100 and 103. Results between the CACC and baseline scenarios were quite 41 

similar for Link 102.  42 

 43 

The last scenario where the Weidemann oscillations were set to zero did not show much 44 

difference in PM2.5 from the baseline, except for Link 100 that showed minor reductions. One 45 

could argue that the Wiedemann scenario also had energy benefits on Link 103, but they are 46 

marginal. Most differences between the Wiedemann scenario and the baseline were muddled.  47 
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FIGURE 4 Operating mode distributions for the five highway links in I-91 northbound 1 

network (bar represents the first random seed and points represent the other 14 seeds)  2 

(a) (b) 

(c) (d) 

(e) 
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1 

FIGURE 5 Example plots of link-level (a) energy and (b) PM2.5 estimates by scenario for 2 

45 microsimulations on the I-91 northbound network 3 

4 

5 

CONCLUSION AND DISCUSSION  6 

This proposed three-layered modeling framework combines the following tools to estimate the 7 

energy consumption and tailpipe emission impacts of connected and automated vehicles: 8 

9 

1. driving behavior model for specific CAV technologies,10 

2. microscopic traffic simulation model, and11 

3. modal emissions model.12 

Despite modest changes to network performance metrics, especially delay and headway, CACC 13 

systems produces substantial changes to operating mode distributions and subsequent emissions 14 

from the baseline Wiedemann 99 driving behavior. 15 

16 

Pairing the energy and emission results by seed, we were able to calculate the percent reductions 17 

for each scenario from the baseline on the I-91 Springfield network. Table 2 below shows the 18 

mean percent reductions and standard deviations for the CACC and Wiedemann without 19 

oscillations scenarios for carbon monoxide (CO), nitrogen oxides (NOx), fine particulate matter 20 

(PM2.5), and volatile organic compounds (VOC) as well as carbon dioxide (CO2) and energy 21 

consumption. Our findings suggest that CACC driving will lead to sizable CO, PM, and VOC 22 

benefits along with slight NOx benefits but will not improve fuel efficiency over the baseline. 23 

The Wiedemann scenario, however, leads to negligible or no benefits from the baseline. 24 

(a) (b) 
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TABLE 2 Mean and standard deviation of energy, CO, NOx, PM2.5, and energy/CO2 1 

benefits (percent reductions) on the I-91 network for the CACC and Weidemann scenarios 2 

from the baseline over the 15 random seeds 3 

 4 

Pollutant 

CACC from Baseline Wiedemann from Baseline 

Mean Std Dev. Mean Std Dev. 

CO 20.12% ±3.85% -0.84% ±6.64% 

NOx 2.53% ±2.20% 1.59% ±3.21% 

PM2.5 25.24% ±4.05% -3.35% ±7.55% 

VOC 10.41% ±2.89% 1.71% ±4.61% 

Energy/CO2 -0.23% ±1.38% 0.25% ±1.97% 

 5 

Based on our results above, using an independent driving behavior model for simulating specific 6 

CAV technologies appears to be preferable over changing the default microsimulation parameters 7 

to mimic CAV driving. While this paper only examines CACC systems, the modeling framework 8 

enables the assessment of other SAE J3016 Level 1 automation technologies or combinations 9 

thereof (1), such as: 10 

 11 

 Dynamic speed harmonization, 12 

 Platooning, 13 

 Lane keeping assistance, and 14 

 Cooperative lane change. 15 

Driving behavior models also can be calibrated and validated against field tests of instrumented 16 

vehicles as the CAV technologies become available. Using MOVES, this study has developed a 17 

streamlined process to evaluate energy and emission impacts of multiple microsimulations of 18 

CAVs with high-resolution, 10 Hz vehicle trajectory data through an external Python tool. 19 

 20 

If government agencies are to start incorporating CAV technology impacts into federal and state 21 

policy, MOVES modeling will be needed. Our current analysis is on the project scale; however, 22 

as currently designed, MOVES cannot easily evaluate changes to driving behavior at the national 23 

or county scale to reflect adoption of CAV technologies. With large amounts of real and 24 

simulated vehicle trajectory data available now and in the near future, it may be appropriate to 25 

reconsider the default drive cycles, which are developed using a single vehicle without 26 

automation or connectivity for a given speed range and road type. We recommend adding a 27 

feature to MOVES that allow users to input custom operating mode distributions for larger scale 28 

analysis of CAVs. 29 

 30 

Although this research presents some promising outcomes, it does not address issues associated 31 

with higher levels of driving automation, SAE Level 3 and above. Changes in vehicle ridesharing 32 

and ownership, routing and mode choice, and even land use due to self-driving and driverless 33 

vehicles will undoubtedly lead to other environmental effects. Continuing in our research, we 34 

plan to examine higher levels of congestion, test different CAV market penetrations, and utilize 35 

more network-specific data in MOVES to refine this modeling framework.   36 
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